快速排序简介

单路快排

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
static Random random = new Random();
public void sortArray(int[] nums) {
int n = nums.length;
if (n <= 1) {
return;
}
quickSort(nums, 0, n - 1);
}
private void quickSort(int[] nums, int left, int right) {
if (left >= right) {
return;
}
int index = partition(nums, left, right);
quickSort(nums, left, index - 1);
quickSort(nums, index + 1, right);
}
private int partition(int[] nums, int left, int right) {
if (left >= right) {
return left;
}
int randomIndex = random.nextInt(right - left + 1) + left;
swap(nums, randomIndex, left);
int pivot = nums[left];
// use j to gather all elements less than pivot
// nums[left + 1, j] < pivot, nums[j + 1, right] >= pivot
int j = left;
for (int i = left + 1; i <= right; i++) {
if (nums[i] >= pivot) {
continue;
} else {
// nums[i] < pivot
j++;
swap(nums, i, j);
}
}
swap(nums, left, j);
return j;
}
private void swap(int[] nums, int left, int right) {
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
}
  • 使用 j 指针来收集小于等于 pivot 的元素,这个思想有些类似 283. 移动零 - 力扣(Leetcode),283 题的代码如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    class Solution {
    public void moveZeroes(int[] nums) {
    int n = nums.length;
    int index = 0; // used to gather elments which are not 0
    for (int i = 0; i < n; i++) {
    if (nums[i] != 0) {
    nums[index] = nums[i];
    index++;
    }
    }
    for (int i = index; i < n; i++) {
    nums[i] = 0;
    }
    }
    }
  • 为何要随机选择 pivot?

    如果总是默认选择待排序区间的最左边元素作为枢轴的话,在有序区间上会导致递归树严重倾斜。比如考虑序列 [1, 2, 3, 4, 5],每轮总是选择区间最左元素作为 pivot 的话,会导致每轮均无法找到小于 pivot 的元素,导致递归树倾斜

    那么,是否确保 pivot 的随机性就足够了呢?考虑下面的序列 [2, 2, 2, 2],无论怎样随机选择枢轴,仍会导致递归树倾斜。所以单路快排在重复元素较多的序列上效果不佳,此时要用二路快排或是三路快排进行优化

双路快排

  • 左边:使用指针 le。遇到严格小于 pivot 的元素则将其放入左区间,否则停下(此时指向的元素是大于或者等于 pivot 的)
  • 右边:使用指针 ge。遇到严格大于 pivot 的元素则将其放入右区间,否则停下(此时指向的元素是小于或者等于 pivot 的)
  • 当 le >= ge 成立,遍历结束,将 pivot 放在 ge 的位置(多思考以下为什么。Key:遍历结束时,ge 要么在 le 的位置,要么在 le 的左边,此时 le 指向的元素才是小于等于 pivot 的)
  • le 和 ge 的初始值:根据我们的定义,[left+1, le) 是小于 pivot 的元素,(ge, right] 是大于 pivot 的元素,那么当 le 初始为 left + 1,ge 初始为 right 时,两个区间均为空
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
static Random random = new Random();
public void sortArray(int[] nums) {
int n = nums.length;
if (n <= 1) {
return;
}
quickSort(nums, 0, n - 1);
}
private void quickSort(int[] nums, int left, int right) {
if (left >= right) {
return;
}
int index = partition(nums, left, right);
quickSort(nums, left, index - 1);
quickSort(nums, index + 1, right);
}
private int partition(int[] nums, int left, int right) {
if (left >= right) {
return left;
}
int randomIndex = random.nextInt(right - left + 1) + left;
swap(nums, randomIndex, left);
int pivot = nums[left];
int le = left + 1;
int ge = right;
while (true) {
// exit on ge >= le
while (le <= ge && nums[le] < pivot) le++;
while (le <= ge && nums[ge] > pivot) ge--;
if (le >= ge) {
break;
}
swap(nums, le, ge);
le++;
ge--;
}
swap(nums, left, ge);
return ge;
}
private void swap(int[] nums, int left, int right) {
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
}

下面是另一个版本的双指针对撞(来源于王道书,补充了随机选择 pivot),大体思路是一致的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
static Random random = new Random();
public void sortArray(int[] nums) {
int n = nums.length;
if (n <= 1) {
return;
}
quickSort(nums, 0, n - 1);
}
private void quickSort(int[] nums, int left, int right) {
if (left >= right) {
return;
}
int index = partition(nums, left, right);
quickSort(nums, left, index - 1);
quickSort(nums, index + 1, right);
}
private int partition(int[] nums, int left, int right) {
int randomIndex = random.nextInt(right - left + 1) + left;
swap(nums, left, randomIndex);
int pivot = nums[left];
while (left < right) {
while (left < right && nums[right] >= pivot) right--; // 直到遇到严格小于pivot的才停下
nums[left] = nums[right];
while (left < right && nums[left] <= pivot) left++; // 直到遇到严格大于pivot的才停下
nums[right] = nums[left];
}
nums[left] = pivot;
return left;
}
private void swap(int[] nums, int left, int right) {
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
}

三路快排

三路快排在解决荷兰国旗问题时尤为有效,可以在 O(n)O(n) 复杂度下解决

三路快排使用了三个区间,分别用来收集小于、等于和大于 pivot 的元素

image-20230320093334391

区间定义如下:

  • [left+1, lt) < pivot
  • [lt, i) == pivot
  • (gt, right] > pivot

那么要如何初始 lt 和 gt 使得上面的三个区间均为空?

将 lt 初始为 left + 1,将 gt 初始为 right,i 初始为 left + 1。循环终止的条件是 i > gt,思考为何可以取等?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
static Random random = new Random();
public void sortArray(int[] nums) {
int n = nums.length;
partition(nums, 0, n - 1);
}
private void partition(int[] nums, int left, int right) {
if (left >= right) {
return;
}
int randomIndex = random.nextInt(right - left + 1) + left;
swap(nums, left, randomIndex);
int pivot = nums[left];
// [left+1, lt) < pivot
// [lt, i) == pivot
// (gt,right] > pivot
int lt = left + 1;
int gt = right;
int i = left + 1;
while (i <= gt) {
if (nums[i] == pivot) {
i++;
} else if (nums[i] > pivot) {
swap(nums, i, gt);
gt--;
} else {
swap(nums, i, lt);
lt++;
i++;
}
}
swap(nums, left, lt - 1); // 将枢轴与第一个区间的最后一个位置进行交换,是lt-1
partition(nums, left, lt - 2);
partition(nums, gt + 1, right);
}
private void swap(int[] nums, int left, int right) {
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
}

延伸例题

下面的题目均运用了快速排序的思想或是其子过程,在力扣上的标签是 快速选择知识点题库 - 力扣(LeetCode)

75. 颜色分类

著名的荷兰国旗问题,使用三路快排可以在一趟扫描中解决

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class Solution {
public void sortColors(int[] nums) {
int n = nums.length;
partition(nums, 0, n - 1);
}
private void partition(int[] nums, int left, int right) {
if (left >= right) {
return;
}
int index = -1;
// find the first index of 1
for (int i = left; i <= right; i++) {
if (nums[i] == 1) {
index = i;
break;
}
}
if (index == -1) {
index = left; // in case there is no 1
}
swap(nums, left, index);
int pivot = 1;
// define pointers
// nums[left+1, lt) < pivot, so lt inits as left+1
// nums[lt, i) = pivot
// nums(gt, right] > pivot, so gt inits as right
int lt = left + 1;
int gt = right;
int i = left + 1;
while (i <= gt) {
if (nums[i] == 1) {
i++;
} else if (nums[i] == 2) {
swap(nums, i, gt);
gt--;
} else {
// nums[i] == 0
swap(nums, i, lt);
lt++;
i++;
}
}
swap(nums, left, lt - 1);
}
private void swap(int[] nums, int left, int right) {
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
}
}

剑指 Offer 21. 调整数组顺序使奇数位于偶数前面

与单路快排的划分过程思路相似

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public int[] exchange(int[] nums) {
int n = nums.length;
int left = 0;
int right = n - 1;
while (left < right) {
while (left < right && nums[left] % 2 == 1) left++;
while (left < right && nums[right] % 2 == 0) right--;
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
left++;
right--;
}
return nums;
}
}

215. 数组中的第K个最大元素

经典的 TopK 问题,2016 年的 408 算法题中用到了同样的思路.

值得注意的是,数组中的第 K 的元素在下标的 k - 1 上(K 从 1 开始)

而数组中的第 K 的元素在下标的 length - k 上(K 从 1 开始)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class Solution {
static Random random = new Random();
public int findKthLargest(int[] nums, int k) {
int n = nums.length;
int index = -1;
int left = 0;
int right = n - 1;
while (index != n - k) {
index = partition(nums, left, right);
if (index == n - k) {
return nums[index];
} else if (index > n - k) {
right = index - 1;
} else {
// index < n - k
left = index + 1;
}
}
return -1;
}
private int partition(int[] nums, int left, int right) {
if (left >= right) {
return left;
}
int randomIndex = random.nextInt(right - left + 1) + left;
swap(nums, left, randomIndex);
int pivot = nums[left];
// two-way partition
int low = left;
int high = right;
while (low < high) {
while (low < high && nums[high] >= pivot) {
high--;
}
nums[low] = nums[high];
while(low < high && nums[low] <= pivot) {
low++;
}
nums[high] = nums[low];
}
nums[low] = pivot;
return low;
}
private void swap(int[] nums, int left, int right) {
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
}
}

剑指 Offer 40. 最小的k个数

TopK 问题的变体,由于是选出 k 个数,因此还可以用堆解决

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public int[] getLeastNumbers(int[] arr, int k) {
if (k == 0) {
return new int[0];
}
// 取出前K个最小元素,应该建立大根堆
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(new Comparator<Integer>() {
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
for (int i = 0; i < k; i++) {
maxHeap.add(10001);
}
for (int i = 0; i < arr.length; i++) {
if (arr[i] < maxHeap.peek()) {
maxHeap.poll();
maxHeap.add(arr[i]);
}
}
int[] ans = new int[k];
for (int i = 0; i < k; i++) {
ans[i] = maxHeap.poll();
}
return ans;
}
}

效率很低😢

同样利用快速排序的子过程解决。由于有效的 k 从 1 开始,那么某次划分返回的 index 是 k - 1 的话,就找到最小的 k 个数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
class Solution {
static Random random = new Random();
public int[] getLeastNumbers(int[] arr, int k) {
if (k == 0) {
return new int[0];
}
int[] res = new int[k];
int n = arr.length;
int index = -1;
int left = 0;
int right = n - 1;
while (index != k - 1) {
index = partition(arr, left, right);
if (index == k - 1) {
for (int i = 0; i <= index; i++) {
res[i] = arr[i];
}
return res;
} else if (index > k - 1) {
right = index - 1;
} else {
left = index + 1;
}
}
return null;
}
private int partition(int[] nums, int left, int right) {
if (left >= right) {
return left;
}
int randomIndex = random.nextInt(right - left + 1) + left;
swap(nums, left, randomIndex);
int pivot = nums[left];
while (left < right) {
while (left < right && nums[right] >= pivot) {
right--;
}
nums[left] = nums[right];
while (left < right && nums[left] <= pivot) {
left++;
}
nums[right] = nums[left];
}
nums[left] = pivot;
return left;
}
private void swap(int[] nums, int left, int right) {
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
}
}

347. 前 K 个高频元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
class Solution {
static Random random = new Random();
Map<Integer, Integer> cnts;
public int[] topKFrequent(int[] nums, int k) {
cnts = new HashMap<>();
for (int num: nums) {
cnts.put(num, cnts.getOrDefault(num, 0) + 1);
}
int n = cnts.keySet().size();
int[] tmp = new int[n];
int j = 0;
for (int key: cnts.keySet()) {
tmp[j] = key;
j++;
}
int index = -1;
int left = 0;
int right = n - 1;
int[] ans = new int[k];
while (index != n - k) {
index = partition(tmp, left, right);
if (index == n - k) {
for (int i = 0; i < k; i++) {
ans[i] = tmp[index + i]; // 注意不要忘了加上偏移
}
return ans;
} else if (index > n - k) {
right = index - 1;
} else {
left = index + 1;
}
}
return ans;
}
private int partition(int[] nums, int left, int right) {
if (left >= right) {
return left;
}
int randomIndex = random.nextInt(right - left + 1) + left;
swap(nums, randomIndex, left);
int pivot = nums[left];
int pivotWeight = cnts.get(pivot);
while (left < right) {
while (left < right && cnts.get(nums[right]) >= pivotWeight) {
right--;
}
nums[left] = nums[right];
while (left < right && cnts.get(nums[left]) <= pivotWeight) {
left++;
}
nums[right] = nums[left];
}
nums[left] = pivot;
return left;
}
private void swap(int[] nums, int left, int right) {
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
}
}

快速排序简介
https://exapricity.tech/Quick-Sort.html
作者
Peiyang He
发布于
2023年3月23日
许可协议